ICCS RESEARCH REPORT ICCS/RR/2023-03-02 MARCH **2023**

Spatio-Temporal Distribution of Aerosols Over Kerala: A Satellite-Based Assessment in Polluting Climate

SRUTHIN VIJAY SINAN NIZAR D. S. PAI

1

SPATIO-TEMPORAL DISTRIBUTION OF AEROSOLS OVER KERALA: A SATELLITE-BASED ASSESSMENT IN POLLUTING CLIMATE

Bу

Sruthin Vijay Sinan Nizar D. S. Pai

KSCSTE – INSTITUTE FOR CLIMATE CHANGE STUDIES

Deepthi Nagar Road, Kanjikkuzhy, Muttambalam P.O. Kerala – 686004

SPATIO-TEMPORAL DISTRIBUTION OF AEROSOLS OVER KERALA: A SATELLITE-BASED ASSESSMENT IN POLLUTING CLIMATE

RR/2023-03-02 2

TABLE OF CONTENTS

Abstract	4
1. Introduction	5
2. Data and Methodology	6
2.1 Data Used	6
2.1.1 AOD Data	6
2.1.2 NCEP Data	7
2.2 Mann-Kendall Test	7
2.3 Sen's Slope Estimator	8
2.4 Seasonality Test	9
2.5 Trajectory Frequency Analysis	10
2.6. Autoregressive integrated moving average (ARIMA)	10
3. Results and Discussion	10
3.1. Spatial Distribution	10
3.2. Monthly Aerosol Distribution	11
3.3. Classification of Kerala Districts in terms of Aerosol Pollution Vulnerability	12
3.3.1. 2001-2005	13
3.3.2. 2006-2010	13
3.3.3. 2011-2015	14
3.3.4. 2016-2019	14
3.3.5. 2020-2021	14
3.4. Frequency Distribution	14
3.4.1. Kasaragod	15
3.4.2. Kannur	15
3.4.3. Wayanad	15
3.4.4. Kozhikode	15
3.4.5. Malappuram	15
3.4.6. Palakkad	15
3.4.7. Thrissur	16
3.4.8. Ernakulam	16
3.4.9. Idukki	16
3.4.10. Kottayam	16
3.4.11. Alappuzha	16
3.4.12. Pathanamthitta	16
3.4.13. Kollam	17
3.4.14. Thiruvananthapuram	17
3.5. Trends in AOD	17
3.6. SARIMA Forecast	18
3.7. Trajectory Frequency Analysis	18
4. Conclusion	19
Fig 1: Flow chart of the methodology	21
Fig 2: Spatial Distribution of mean AOD over Kerala during 2001-2021	21
Fig 3: Monthly distribution of AOD over Kerala (2001-2019)	22
Fig 4: Classification of districts into zones in context to vulnerability level during the period	22
2001-2021	
Fig 5: Variation in Vulnerability level during a) 2001-2005, b) 2006-2010, c) 2011-2015,	23
and d) 2016-2019.	
Fig 6: Vulnerability level of Kerala during the pandemic lockdown period a) 2020 and b) 2021	23
Fig 7: Variation in Frequency Distribution (%) of AOD over each district during (a) 2001-	24-25
2005, and (b) 2015-2019	

Fig 8: Time Series of AOD over Kerala districts	26-27
Fig 9: SARIMA forecast until 2023	28
Fig 10: Trajectory Frequency of Kozhikode at 1500m and 100m altitude during July (a, b) and	28
December (c, d)	
Fig 11: Trajectory Frequency of Thiruvananthapuram at 1500m and 100m altitude during	29
May (a, b), and February (c, d)	
References	30

ABSTRACT

India has seen an increase in the extreme rainfall events (EREs) over the years, which is likely to continue due to global warming. The rising frequency of EREs is often linked to increasing atmospheric pollution, particularly atmospheric aerosols, which are one of the key components of the climate system. The recent increase in EREs over Kerala leading to extensive flooding and landslide has demonstrated the consequences of the combined impact of global warming and atmospheric pollution. Studies reveal that the recent EREs are particularly characterized by highly polluted (aerosolrich) scenarios, supporting cloud invigoration with moisture convergence leading to EREs. In the current era of global warming, where the atmospheric water holding capacity is expected to increase, the prime question is whether there will be sufficient aerosols (as cloud condensation nuclei) to support precipitation? In this context, the present study is dedicated to understanding the spatial and temporal distribution of aerosols over the state of Kerala. Monthly average Aerosol Optical Depth (AOD, 550 nm) from Collection 6.1, level 3 AOD products (1° × 1°) derived from Terra's MODIS measurements for 21 years (2001 - 2021) is discussed in this study, while data from 2001 to 2019 is utilized for the analysis. Spatio-temporal analysis of the district-wise AOD data is carried out along with a trajectory analysis to ascertain probable aerosol sources. Time series analysis indicates a significant increasing trend in AOD over Kerala. A higher rate of increase in AOD is observed among the northern districts, with Kozhikode recording the fastest growth. AOD is particularly heavier during certain months, and the wind trajectory analysis performed reveals the direction of the wind which might have carried the possible sources like dust, sea salt, smoke, etc., during the observed monthly aerosol loading during highest and lowest concentrations. Further, the frequency analysis shows that the frequency of aerosol-pollution-episodes (AOD > 0.4) has increased alarmingly from 13.3 % (2001-2005) to 53.3% (2015-2019). Further, a classification of the districts based on mean AOD through 4 sub periods: 2001-2005, 2006-2010, 2011-2015, and 2016-2019 reveals that none of the districts were safe zones (AOD<0.3) after the 2001-2005 period. Eventually in recent years 2016-2019, Kozhikode district had turned highly vulnerable (AOD>0.5), while districts including Kasaragod, Kannur, Thrissur, Palakkad, Ernakulam, Kottayam, Alappuzha, and Pathanamthitta were vulnerable zones (0.4<AOD<0.5), and remaining districts continued as less vulnerable zones (0.3<AOD<0.4).